University of Michigan Lecture Archiving and related activities of the U-M ATLAS Collaboratory Project

Jeremy Herr
University of Michigan
CHEP 2007, Victoria, B.C.
• Goal: to study and advance the technologies and practices required for the organization and execution of modern, large-scale collaborative research experiments
• specifically: using videoconferencing and web archiving to help the ATLAS experiment
• Activities since 1999
 – archiving of ATLAS meetings and software tutorials
 – development of automated lecture archiving systems
 – development and promotion of Lecture Object
 – QoS bandwidth reservation testing
 – design and implementation of group-to-group video conferencing facilities at CERN and Michigan
Some current ATLAS Collaboratory Project activities

- Shaping Collaboration 2006 conference
- Collaborative Tools Research Experience for Undergraduates (planned for summer 2008)
 - let bright CS undergrads work on our HEP collaborative tools problems
- Fall 2007: pilot project to test remote teaching facility
 - this allows faculty to teach their classes remotely while visiting CERN during the semester
People

- Homer A. Neal – PI, Director
- Steven Goldfarb – Research Scientist
- Shawn McKee – Advisor, Research Scientist
- Jeremy Herr – Project Manager
- Tushar Bhatnagar – Engineering Student (IR tracking)
- Robert Vogt – Electrical Engineer (ultrasound tracking)
- Mitch McLachlan – Media Specialist (recording processes)
- Curtis Hiller – Web development, programmer intern
- Alumni
 - Jim Irrer - engineer
 - Cang Ye - engineer
 - Giosue Vitaglione – software developer
 - Eric Myers – software developer
 - Kyle Wilamowski – media specialist
Timeline: Lecture Archiving

• 1997: initial development of web lecture recording/viewing software
• 1999 – Present: Web Lecture Archive Project funded by ATLAS and U-M to record events:
 – Software Tutorials
 – Physics Workshops
 – Large group meetings
• 2003: $250,000 grant from NSF (partnering with APS) to develop more automated recording, archiving and tracking system
• 2005: Patent filed for infrared tracking camera system
• 2006–07: MScribe Pilot Project
 – recorded 8 entire U-M courses using automated carts
• 1999 – Present: ongoing development:
 – Lecture Object specification
 – Web Lecture viewer software
 – media formatting and processing software
• 2007: Our archive now has 1600+ lectures
What is a Web Lecture?

• Low-bandwidth media-rich presentation viewable with:
 – any web browser
 – RealPlayer plug-in

• Media streams:
 – lecturer’s audio
 – lecturer’s video
 – high-res slide images
 – high-res chalkboard images

• Features
 – slide index
 – ability to “jump around”
 – platform independence
 – low bandwidth
 – ability to evaluate usage
What is a Lecture Object?

- Originally proposed by our team in 2000 at an international conference
- A standardized data object containing metadata, timing, high-res media
- Designed for
 - Longevity
 - Sharing among multiple institutions
 - Flexibility in viewing formats

Transformations

Lecture Object

Dublin Core, IEEE LOM meta data

mpeg-4

jpeg

XML Description

Description

Dublin Core, IEEE LOM meta data
Recent Recordings

- some recent recordings
 - ATLAS Week, February 2007
 - Trigger Aware Analysis Tutorial, 23 March 2007
 - ROOT Workshop, 26 March 2007
 - Physics Analysis Tools Workshop, Norway, 26 April 2007
 - CTEQ Workshop, Michigan, 14 May 2007
 - ATLAS Week, Glasgow, July 2007
 - First ATLAS Physics Workshop of the Americas, SLAC, 20 August 2007

![Graph showing growth of UM-WLAP Lecture Archive 2003-2006](image)
Contents of Lecture Archive

- The ATLAS experiment
 - software tutorials
 - physics workshops
 - large meetings
- Special CERN events and workshops
- Special University of Michigan events
- U-M Saturday Morning Physics (since 2001)
- American Physical Society (APS) meetings
- Int’l Conference on Systems Biology 2005 at Harvard
- MScribe classroom recordings (2006-07)
 - American Culture, History of Art, Physics, Statistics, Psychology, Bioinformatics, School of Information
• MScribe is the next step toward large-scale automation of web lecture recording
• Its new developments and technology are being used simultaneously to benefit ATLAS
• Goals of MScribe Pilot Project (2006-07):
 – Completely automate the recording of classroom lectures
 – Develop a robust tracking system to eliminate human camera operator
 – Study how students use recordings and the ramifications of the technology
MScribe – Technical Achievements

- 4 automated, self-contained, portable carts built. They record:
 - audio
 - video
 - slides, laptop screen, annotations
 - chalkboard writing
- 8 courses, 200 hours of video recorded
- recordings accomplished by unskilled student helpers (press START and STOP)
- RealPlayer Web Lectures and video iPod lectures were provided for students online
- venues ranged from small classrooms to large auditoria
- chalkboard writing and tablet PC annotations were captured
- automatic processing software developed and improved
not sure if i’ll use these pics yet...
MScribe – Pedagogical Studies

• Questionnaire results:
 – 58% of all students used MScribe
 – class attendance was not noticeably affected
 – students spent more time in class taking notes
 – students spent more time reviewing lecture content / notes
 – students spent more time studying for exams

• Focus group findings:
 – MScribe technology allows students to pay closer attention to the ideas in a lecture.
 – Some use the live lecture to outline important points and to “absorb” the information, and detail the notes by listening again later.
 – Student use patterns differ.

• Server log analysis:
 – students fast forwarded through web lectures, but did not jump around much
 – students made heavy use of web lectures right before exams
MScribe benefit to ATLAS

- MScribe recording system now installed on a laptop
 - Drastically more portable than cart, laptop can be taken all over the world (auto-tracking not yet included)
 - Allows us to post ATLAS talks faster
- Laptop system used to record 5 ATLAS events (120 talks):
 - Physics Analysis Tools Workshop (April 2007, Norway)
 - CTEQ Workshop (May 2007, Gull Lake, Michigan)
 - ATLAS Week (July 2007, Glasgow)
 - UM-CERN REU Student Talks (August 2007, CERN)
 - First ATLAS Physics Workshop of the Americas (August 2007, SLAC)
- New archiving/processing software also used for these talks
- We hope to use tracking system for ATLAS talks soon
Survey of Tracking Technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Description</th>
<th>Price/Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human camera operator</td>
<td>Intelligent tracking that generates pleasing video</td>
<td>Very expensive, gets tired after several hours</td>
</tr>
<tr>
<td>Ultrasonic</td>
<td>Probably accurate enough for tracking a lecturer</td>
<td>Requires extensive permanent installation</td>
</tr>
<tr>
<td>Radio Frequency (RF)</td>
<td>Almost reasonably priced (6,000 USD)</td>
<td>Slow and insufficient accuracy, especially indoors</td>
</tr>
<tr>
<td>Radio Frequency (RF) BlueSoft</td>
<td>Almost reasonably priced (10,000 USD), more accurate than RF</td>
<td>Requires extensive set-up and calibration</td>
</tr>
<tr>
<td>Position Sensitive Detectors (PSD)</td>
<td>Extremely accurate</td>
<td>Not sensitive enough at long range</td>
</tr>
<tr>
<td>IR quad detector</td>
<td>Inexpensive, accurate</td>
<td>Will always require a pan-tilt platform</td>
</tr>
<tr>
<td>“passive” IR Used in Boeing factories</td>
<td>Inexpensive (4000 USD), simple and very accurate</td>
<td>Very easily distracted by any reflective objects in the room</td>
</tr>
<tr>
<td>“active” IR Using IR LED necklace</td>
<td>Inexpensive (4000 USD), simple and very accurate</td>
<td>Confused by incandescent lights and bright sunlight</td>
</tr>
</tbody>
</table>
Active IR tracking system used for MScribe 2006-2007

- “Active” Infrared used 2006-07
 - necklace chain of bright IR LED’s
 - CCD camera follows it
 - PTZ commands sent to video camera

- This system satisfies our criteria
 - Portable: sits on a cart
 - Robust: simple design makes it very robust
 - Affordable: currently under 4 000 USD
 - No expert intervention: start it and it works
 - Little setup: almost no calibration required
 - Accurate to within centimeters

- Weakness of this system
 - confounded by incandescents, sunlight
 - can only be used in certain rooms
Active IR Tracking System – Recent Improvements

• Made improvements to IR tracking system
 – optimized filter arrangement
 – found extremely bright wide-angle IR LEDs
 – fully exploited camera settings
 – can now be used in all rooms on campus

new necklace with super-bright IR LEDs
Tracking Camera Current Research

- **Necklace Design**
 - testing fiber-optic options
 - parallel chain of wide-angle IR LEDs (120°, 8mW/sr)
 - super-bright wide-angle Malaysian LEDs (120°, 45mW/sr) with special high-current circuitry to drive them from battery pack

- **Flashing LED necklace under development**
 - will further improve signal-to-noise ratio

- **Testing Tracking Algorithms**
 - Modularizing current code
 - Generating database of position data
 - Trying to mimic human camera operator

- **Ultrasonic Phase-Difference array**
 - currently developing this completely different tracking technology in parallel with improvements to IR system
 - see next page...
Ultrasound Tracking System

- Necklace and receiver system, using ultrasound instead of IR:
 - necklace sends 40 kHz pulses instead of always-on LEDs
 - an array of 4 ultrasonic receivers on a 10cm² circuit board receive pulse at slightly different times. The phase difference is used to calculate angle

- Expected advantages
 - no competing noise in this medium
 - lower power consumption, longer battery life
 - can send synchronized RF pulse from necklace to calculate distance (3D position will enable better tracking/zooming)
 - can hopefully eliminate need for pan-tilt platform
U-M Campus-Wide Recording Service

- Already developed expertise and hardware/software tools over 8 years
- Have trained staff in place
- Requesting start-up funds from University to start a campus-wide recording service
- Because everything is digital and mostly automated, costs/pricing are low
- could become a model for CERN lecture recording service
Lecture Object Development

• MScribe technical advisory committee is working on refining the standard

• We are collaborating with CERN in this development. Gregory Favre (CERN IT) is working to make SMAC support it.

• Next versions of the Lecture Object will:
 – support arbitrary numbers of streams
 – support access control, authorization, copyright
 – remain simple, minimal and easy to use
 – be targeted to lectures, not generalized “learning objects”
Users of Lecture Object

• Using a simple, open, well-defined global archival standard will:
 – preserve important material far into the future
 – encourage multiple institutions to share their archives
 – enable shoe-string operations as well as well-funded groups to easily produce compatible content

• Archives using UM-WLAP technology and Lecture Object maintained by:
 – University of Michigan
 – CERN
 – American Physical Society (APS)
 – Fermilab
Advanced Indexing and Search using BlueStream

• BlueStream is an online environment at the University of Michigan with powerful tools for working with digital video, audio, images, and documents.

• The ATLAS Collaboratory Project, through WLAP and MScribe, has made hundreds of hours of video available online.

• Clearly, powerful search and indexing is needed.

• BlueStream has tools that ingest video, images and metadata and:
 – transcode it to multiple formats
 – convert speech to text to index the video stream
 – perform OCR on the slide images
 – provide search functions that take the user directly to a point in the video

• We have begun working with this tool to provide advanced search capability for some classroom lectures
The Future

- Totally automated room installations
 - record lectures at times specified in online agenda
- ultra-portable recording carts
 - entire system including tracking can be checked on airplane
- desktop recording software
- make many display formats available (esp Flash)
- multiple-person (and audience) tracking
- integration with other lecture recording systems:
 - SMAC
 - Apple’s new lecture recording system (name?)
 - EVO
Links

• To view ATLAS talks:

 www.wlap.org/atlas

• Web Lecture portal:
 – http://www.wlap.org

• ATLAS Collaboratory Project
 – http://vesuvio.physics.lsa.umich.edu/acp